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1. Introduction.

In a recent series of papers ({(1981), (1984a), and (1984b)) Bradley Efron has suggested a number of
methods for constructing confidence intervals for a real valued parameter 8 using the bootstrap. In
increasing order of generality, these are the Percentile interval, the Bias Corrected Percentile (BC) interval
and the Bias Corrected Percentile Acceleration (BC,) interval. Each of these intervals is constructed from

the bootstrap distribution of a statistic 3.

The usual (non-parametric) bootstrap works by sampling from the empirical distribution function ?“‘:
accordingly, confidence intervals derived from the bootstrap are dasigned for non-parametric problems. it
is difficult, however, t0 define a “correct® confidence interval in the non-parametric setting and this
quantity Is needed in order 10 measure the performance of a confidencs interval procedure. Thus to
assess the qually of the bootstrap intervals, Efron moves to a different arena, that ol one-parameter
families. In this setting, one can construct an interval with the desired coverage by inverting the most
powerful test at each parameter value. Efron takes this exact interval as the gold standaty and considers
the parametric versions of the bootstrap intervais, that is, those obtained from the “parametric® bootstrap
(sampling from the parametric m.l.e instead of ?“‘ ). Efron shows that the most general of these intervals,

the BC, interval, is second order comrect; that is, its endpoints difler from the exact interval by Op(1/n).
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This provides a strong justification for the BC, interval. Standard confidence intervals of the form
@+29 5,8 +419 §) (1.1)

differ from the exact interval by Oy(1/ n/2). (In the above, G is an estimate of the standard deviation of 8).
The Op(1/ n1/2) term can cause the exact interval to be asymmetric, an effect picked up by the BC, interval

but not by the standard intervals or by studentized intervals, both of which are symmetric by definition.

While Efron does not show that the non-parametric BC, interval is second order correct, he hypothesizes
that given a reasonablie definition of this notion, it will be.

Underlying the BC , interval is a transformation of the problem to a Normal Scaled Translation Family
(Efron (1882)) of the form 6+(1+a0)Z where Z is a N(0,1) random variable. Although computation of the
BC, interval doesn't require specification of this transformation, Efron shows that a) if such a
transformation exists, the BC, interval equals the exact interval, and b) the BC, interval is second order
correct in any one parameter problem, so that loosely speaking, to second order, such a transformation
always exists.

In this paper we show how to construct this transformation in general. It tums out to be a variance

stabilizing transformation followed by a skewness reducing transformation. This construction produces

the following benefits: 1) it sheds light on how the BC, interval works and 2) produces a new interval, (we
call it the "BC,0" interval) equal to the BC, interval (1o 2nd order) which can be computed without
bootstrap sampling. We also derive from (2) a second order approximation to the bootstrap distribution ot
the statistic that doesn' require bootstrap sampling. Both the new interval and the approximation require
only n+2 evaluations of the statistic. The transformation generalizes the one constructed by Efron
{1984b, section 10) for translation families.

The layout of this paper is as follows. In section 2 we concentrate on one parameter problems. We

review the BC, interval and its relation to the exact interval. The BC,O interval is defined and shown to

equal (to second order) the BC, interval. Some numerical examples are given. In section 3 we discuss

confidence intervals for multiparameter problems, and section 4 focusses on the non-parametric problem.
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We show how the BCa° interval can be computed without bootstrap sampling and give a number of

' examples. Section 5 shows how the bootstrap disribution of a statistic can be approximated using the

tools developed earlier. Finally, in section 6 we provide proofs of the results quoted throughout.

2. Confidence Intervals for One Parameter Problems.

2.1 The Bootstrap Method

A We begin with a statement of the bootstrap method. The notation in this paper will follow that of Efron
{1984b) as closely as possible.

Let y=(x{.X»...X,) represent the available data with each x; assumed to be an independent realization
from an unknown probability distribution F,‘. Here 1 is the parameter vector and the parameter of interest
is some functional O-t(F,‘). We have a point estimate G-t(?ﬂ) where ?,‘ is some estimate of F,‘ and would
like a confidence interval for 8. The bootstrap method works by resampling from ?ﬂ. There are three

distinct resampling strategies depending on the choice of ?.q:

1) One parameter problems. Here we assumae that 9 is the only unknown parémeter, so that each x; has
distribution Fg. Resampling is done from F§ where 8is typically the maximum likelihood estimate of 6. This
is known as the “parametric bootstrap”.

2) Muitiparameter pmbleriis. We take f{ equal to the maximum likelihood estimate of n and resample from
Fﬁ. This is a multiparameter parametric bootstrap.

.. 3) Non-parametric problems. Fy can be any distribution, so we estimate it by the empirical distribution
function ?". the non-parametric maximum fikelihood estimator of F,‘. Resampling from l?“ is equivalent to
sampling with replacement from the original data x{ x,,...x,. This is the usual (non-parametric) bootstrap.
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N 2.2 The BCj, Interval.

Efron's BC, interval uses bootstrap sampling to construct an approximate 1-2a confidence interval for

0. Depending on the choice of ?ﬂ in steps a) and b) of the following algorithm, the intervals will apply to

situations 1), 2) or 3). The BC, interval is computed as follows:

L] * L] A
a) Bootstrap data sets yy , y ....yg are created by resampling from Fn'

b) For eachyy,’, b=1,2,...B, the bootstrap estimate 6,.,'-!(?,")'15 cakulated, where En' is the estimate of F
basedonyy, .

I L2
c) The bootstrap distribution of the 8y, values is constructed,

Gis) = #Br<s}/B 21)
d) The bias correction
25 = &'G@) @2)

is computed, &(.) being the cdf of the standard normal.
e) The acceleration constant a is computed (details later).
f) The BC, interval is then given by

B @(4al). &' @(L1al] @3) 5
where Z{a]=zg+zo+z(WY (1-a(zq+z@)) and ZWe1(a).

We note that when a=0, (2.3) reduces to Efron’s BC (Bias-corrected) percentile interval, and i also z4=0,

. . A
then (2.3) is simply [G-1(a).G-1(1-q)], the percentile interval.
For the remainder of this section, we will be discussing the parametric BC, interval, that is, with Fq=F.

Sections 3 and 4 will discuss the multiparameter parametric BC, and the non-parametric BC, respectively.
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Where does the complicated looking formula (2.3) come from? Recall that standard confidence o

r §

intervals (1.1) are based on the assumption
89 ~ No.) 2.4) %

g . _:!;

The BC, interval is based on a more general assumption: y
A R

00X ~ Nzolt +axa) 25) o

where g¢(.) is a monotone transformation, In (2.4) it is assumed that on the given scale, the

standardized statistic is normal with constant variance. In (2.5), we only assume that on some transformed ;"

scale, the standardized statistic is normal, possibly with some bias and possibly with a standard deviation :L
=

changing linearly with the parameter. Efron proves two facts about the BC, interval:

1) If (2.5) holds for some g(.), then the BC, interval is cormrect.

AR RS

2) For any one parameter problem, the BC, interval is second order correct. This means roughly that any

one parameter problem can be approximately put in form (2.5).

S A M

)
Wi
Here's in more detail what's meant by 1) and 2). One can show that i (2.5) holds then the problem can be
further transformed into a translation problem. The transformation used is h(t)=(1/ a)log(1+at). The -
transformed problem is -
&

Cagew -
§ = (1) log(1 +ag)
¢ = (1/a) log(1 + ag(8)) =

W= (1/a) b1 + aZ-2) (26) A




Z being a N(0,1) random variable. On the { scale an “exact” interval can be constructed by inverting the
pivotal E - §. Transforming back to the g(.) scale then gives the BC; interval. This is the meaning of 1). Fact
2) refers to a comparison of the BC, interval with the exact interval for any one parameter problem. If we are
in a one-parameter problem, then the statistic 8 has a distribution depending only on 9, say fg. Now
suppose that the 100(1-a)th percentile of 8 asa function of 8, say 6(a), is a continuously increasing
function of @ for any fixed a. Then the usual exact confidence interval (constructed by inverting the size

a most powerful test at each 8) is (0g,[a].0x[1-a]) where 84,[a] is the value of 8 satistying 8(a)=6. Then

Efron shows

Bcal0] - 8ex ()
_ - Qg1/n) 27
c
where 8gc,[a] is the endpoint of the BC, interval. By comparison, the endpoints of the standard interval
(1.1) differ from the exact ones by Op(n-12).

What makes the BC, interval attractive is that one doesnt need to know the transformation g(.) to
construct the intervall Looking back at (2.3), we see that 3 things are needed: the bootstrap distribution of
y (é), the bias constant zy and the acceleration constant a. As mentioned earlier , the bias term zq is
estimated by ¢-1u=(6'_ < 8)). Note that P(g(8") < g(6))= P(8" < 8) for any monotone g(.) so bias is
transformation invariant. It tums out that zq is typically Op(n-172).

We have stifl fo discuss the acceleration constant a. From (2.5) we see that a measures how fast the

standard deviation of g@) is changing with respect to g(8). Like zq, a is typically Op(n"""). Efron shows

that a can be estimated by

a= — (28)
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Here lg(8)=d/ d8 (log fg) evaluated at e=8 and SKEWy_5(2) represents the skewness of the random
variable Z under the distribution governed by 8=8. As is the case with the other two components,
computation of (2.8) doesn't require knowledge of g(.). It can be computed analytically for some simple
cases and requires parametric bootstrap calculations in general. Note also that because the likelihood is

invariant under monotone reparametrizations so is the right hand side of (2.8).

2.3 Example 1.

Table 1 illustrates the exact, standard and bootstrap confidence intervals for a familiar problem. The
data x4, X9,..X, areii.d N(0,1). The parameter of interest is 8=Var(x;). Level 1-2a confidence intervals are
to be based on the unbiassed estimate 8- Z(xi-i')zl (n-1). The sample size n was taken to be 20 and
a=.05. The exact interval is based on inverting the pivotal 8/0 around its chi-squared (n-1) distribution.
The standard interval (line 2) is of the form (1.1) with G = S(z/n)vz the estimated asymptotic standard error
of ‘é The BC, interval (line 5) is based on formula (2.5). The BC interval (line 4) is based on (2.5) with a
equal to 0 and the percentile interval (line 3) has a and zy equal to 0. The bootstrapping was performed
parametrically, that is, resampling was done from N(O.‘é). The remaining lines are disc‘ussed in section 4 .
The lower and upper values in Table 1 refer o averages over 300 monte carlo simulations of the intervals.

The level column indicates the proportion of tnals in which each interval didnt contain the true value 8=1.

Table 1
Confidence intervals for the variance

Average Average Level %)
Lower Upper

(1) Bact .630 1.878 10.0
(2) Standard .466 1.531 11.0
(3) Percentile . 1.585 10.7
(4) BC 578 1.670 10.7
(5) BC, .628 1.860 9.7
(6) BC,® . .829 1.877 10.0
(7) Percentile . 1.363 243
(8) BC .592 1.467 19.3
(9) BC, . 1.524 19.3

(10) BC,O . 1.540 18.7
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Of the intervals (1)~ (5), only the BC, interval captures the assymelry of the exact interval. The standard

interval (2) undercovers on the right but overcovers on the left so the overall level is about right. This
illustrates why coverage alone is not a good way to assess contidence intervals. Efron (1984b) also

considers this example and shows that to a high order of approximation one can transform the problem

into form (2.5) with 29=.1082 and a=(1/6)(8/19)1/2 = .1081. Hence it is not surprising that the percentile

and BC intervals perform poorly because the bias and acceleration components are non-negligible.
Remarks.

a) Efron begins by assuming that only 5 has been observed , having density fg. Bootstrap values 8° are

generated from f3. We have assumed that a data vector y has been observed but confidence intervals will

be based on ly on the m.L.e. 9 . The two notions are equivalent and it is easy to see that the distribution of

8" for y'~ Fg is fy. By starting with the data vector y , the one-parameter, multi-parameter and non-

parametric problems can all be presented in a unified fashion.

b). Let lv(e) be the log likefihood for 8 based on y. Then as Efron notes ( Remark F), Iy(e) could be
used in place of lg(8 ) in the formula for a, for their skewnesses differ by only Op( 1/n). The formula based

on k(8 ) will sometimes be easier to compute in the one-parameter case and is used in the multi-

parameter and non-parametric problems in Sections 3 and 4.

2.4 A ditferent view of the BC, Interval: the BC,? interval.

It seems that the computation of the bootstrap distribution G alleviates the need to know g(.), yet the

second order correctness of the BC , interval suggests that a g(.) always exists approximately satisfying

(2.5). Indeed this is the case as we will show in this section.




Let I,(8) be the log likelihood for @ based ony. Let x,(8)=E(d?1,(8) /d82) be the expected Fisher

A a . e A A
information for 8 and let o= [x,(8)] 2. Then the variance stabilizing transformation for 8 is g,(8) where

g = oJ ! [eu] YR : (29)

Let gA(s)s(eA5~1)/ A, a skewness reducing lransformation for strategically chosen A. And finally let
g(t)=ga(g(1)). Then the following theorem asserts that this g(.) puts any one parameter problem into

approximately form (2.5).

Theorem 2.1

If §~f9, and g(t) is as defined above, then with regularity conditions on the derivatives of the log-
likelihood,

E@®-9@) = Z+O

Var (g8 -o(®) = (3 +Ag@) + O

Furthermore, i A= SKEWg_5(lg(0)) 6, then

SKEW (g(@-98)) = O()

What use is theorem 2.1? For one, it enables us to construct a confidence interval on the original 8 scale.
~ A
For simplicity, choose ¢ in (2.9) so that g4(6)=0 and hence g(8)=0. If (2.5) holds, then Efron shows that the

endpoints of the correct interval on the g-scale are

A a2+t
o(6 + [1 +a9(@)]
(1 (Zg+2M))
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A
which equals (zg+2(®)/ (1-a(zg+2z(®)) since g(6)=0. The corresponding endpoints on the 8 scals are thus

(zo+Z
gl [ ] 2.11)

1a(zg+Z¥))

We will call this interval the BC .0 interval and denote its endpoints by8gc,? [a]. Given theorem 2.1, it is

not surprising that the endpoints of BC,0 and BC, agree up to Op(n™Y).

A ety e i 4 e

Theorem 2.2

O pcled -0 ca [
—_— - Oy
[+

Together with Efron's result (5.4), it also establishes the second order correctness of the BCao interval.

Note that the BC .0 interval, like the BC, interval, maps in the obvious way under reparametrization

because the variance stabilizing transformation also maps correctly.

2.5 Example 1 continued. ' 1

Line 6 in Table 1 shows the results of the BC 0 interval applied 1o the variance problem. The overall

results are very similar to the BC, numbers and on an individual basis the BC ;0 and the BC, intervals were

e
LTI
PSR

very close. We used the values z5=.1082 and a=(1/6)(8/19)125,1081 computed analytically by Efron.

The transformation g(s) works out to {(n-1)/ 2]'2log(s) and hence g(s)=g,(g1(1))=k{C+ka where c= [(n-1)/

Ty ".-

2]123 = 1/3. Thus the procedure has reproduced the Wilson-Hitferty cube root transformation. Efron

v I

(1984b, Remark E) makes a similar calculation.




2.6. Example 2. The correlation coefficient.

As a second example we consider the correlation coefficient problem discussed in Efron and Hinkley

(1977). The data (x;y;) are i.i.d bivariate normal with means 0, variance 1 and correlation 8. We will base
central 30% confidence intervals for 6 on the m.le 3 Note that the sample correlation
p=Ixy; / (Ix2Zy;2)172 is not the m.Le. Standard calculations show  a=-(1/ 3)(8(3+62))/ [n12(14+62)% 2],

We will consider the case n=15, 8=.9 for which a=-.12119. Table 2 shows the results of 300 monte carlo

runs for a number of intervals.

Table 2
Results for correlation coefficient example.

Average Average Level (%)
Upper

Lower
Standard 816 954 7.0
(based on p)
Standard 757 958 73
(based ontantr(p))
Parcentile .761 930 18.0
8C 742 922 23.3
8c, .701 914 29.3
BC,0 763 .931 14.0

The first two intervals are based on the sample comelation coefficient (using the observed Fisher
information for the variance). The second interval was obtained by transforming by tanh-1, computing the
interval, then transforming back. The bootstrap intervals are all based on 3 and parametric bootstrap

sampling. The variance stabilizing transformation tums out to be

01(6) = n'2{tanh1[2129 (1462)2] - tanh"'( &/(1462)12 ) (2.12)
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The results are surprising. The BC and BC, intervals seem to pull percentile interval in the wrong direction
and hence the coverage gets worse. The BCa° interval performs quite well and seems to agree with the

interval based on the tanh"! transformation.

2.7 More on the transformations.
DD
Recall the discussion of the BC, interval in section A monotone transformation g(.) that mapped the

problem into the form g(é)«g(e) ~ N(-zo,(1+ag(e))2) was assumed to exist. Let 3:9(3) and ¢=g(8). Once the
problem was mapped to the ¢ scale, the transformation (1/ a) log{1+at) was used to further map the
problem into a translation family and thereby obtain an exact confidence interval. The two transformations

were then inverted to produce the desired interval on the 0 scale. This is summarized in Figure 1.

Figure 1.
Transformations Implicitly used by
the BC, interval
¢= 9(\9’) /}- (v a)log(1+ag(e))\
5-% 9~ Nizo{1+a9) (- tuiTajogi+alZ zg)
<-parametrization->

The BC, procedure automatically achieves this working only on the 6 scale with no knowledge of g(.). The
BC,o interval, on the other hand, gives an explicit construction for ¢(.), namely g(t)=g¢(g,(t)) where

g1(t)=f t{xx(u)]12du and g,(1)=(e3L1)/ a. Notice that the transformation (e3-1)/ a is just the inverse of the
transformation (1/ a)log{1+at). Hence we have a simpler description of the intervals: the transformation
g1(t) is used to map the problem into the translation form e-C+(1/ a)log(1+a(Z-zg)). The BCa° procedure

computes gy(t) explicitly while the the BC_, procedure avoids computation of g(t) through use of the

bootstrap distribution G.
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3. Confidence intervals In muitiparameter problems.

In section 2 we concentrated on one-parameter probléms although early on we discussed the
multiparameter parametric bootstrap. Here we will briefly describe the extension of the BC, and BC,°
intervals to multiparameter problems. The main purpose of the discussion will be to provide a framework
for the non-parametric problem addressed in the next section.

Suppose that our unknown probability mechanism is F,‘ where 1 is a k dimensional parameter.
Denote the (real-valued) parameter of interest by 0=t(n). In order to apply the confidence interval
procedures of section 2, we must first reduce the problem to a one-parameter problem. We will follow

Efron and utilize Stein's least favourable family for this purpose.
Denote the density of Fy, by thand letthe m.Le of 1 be 7. Let Ly be the k by k matrix with iith entry

-{d2/ dn i ) log fy evaluated at 1. Let V be the gradient vector of 8=t(n) evaluated at 1,

6,=(d/ an) ) naA. The least favourable direction tt_lrough 1 is defined to be

A=V G.1)

. A ~
The least favourable family F is the one-dimensional subfamily of F,‘ passing through ?1 in the direction p.:
A
F:lgag B2

Note that fj and i are fixed, and A is the parameter of the family. Why is this tamily called least favourable?
Roughly speaking, this family points in the direction that 8 is changing fastest in the information metric
(lﬁ)" . More formally, consider estimation of 6(A)=t(fj+A1) in the family th+a1. One can show that observed
Fisher information for 8() in this problem is the same as that for 5-!(?\) in the original k dimensional
problem. Furthermore, any other subfamily has a greater Fisher information for 6. In this asymptotic sense
the reduction of the fuil family to the least favourable family is the only reduction in which estimation of 0 is

not made artificially easier. Figure 2 illustrates the least favourable family.
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Figure 2.
Stein's least favourable family

fi= m.Le, 8= t(R), Cg =(n | tm)=6},
the level surface of constant 8

Parameter
space

AT

Tibshirani and Wasserman (1985) and Diciccio and Tibshirani (1985) show that the least favourable
family passes through fi in the same direction as the profile likelihood and also that the two families differ
by only Oy(1/n). "

Given this reduction we can now apply the BC, method, acting as # our problem is the one parameter
X problem {4,,4. The algorithm of section 2.2 can be used with resampling performed parametrically from

the m.lL.e FA (corresponding to the one dimensional m..e A=0). The bias constant zg is estimated by

CRAPL A M ]

0'1(6(3)) as before. The acceleration constant a will be different than before, however; it will involve the

P skewness of the log-likelihood in the least favourable family:

LN N

S KEW) o (d/dhYog 5 , )
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Excepl for some simple cases, estimation of a will require bootstrap computations. Fortunately, an explicit .
b
formula for a will be available in the non-parametric case (next section). : i
The BC,o method can also be used in this setting. its definition is much the sAame as before. Here we b
. e
} uségq(t) = ¢/t [xa™u)]2du, where x,Mu) is the expected Fisher information for” in the family f7+25-and X
3 : ‘\
. ga(t)-(e"-n/ a asbefore. Using formula (3.3) for a and z =01 (é(a)) we obtain an interval (A, A)) for A. ;
Finally this gives an interval for @ through the relationship e(l)-t(ﬁ+kﬁ). Note that g(t) will be ditficuit to
. calculate in general but ke a, i is easiy computed in the non-parametric case. 79
We have constructed the BC, and BC,° intervals for multiparameter problems by extending the one- .
parameter definition to the least favourable family. To justify their use we need to show that in some sense
- they are second order correct. It tums out that a "correct” interval is difficult to define; instead, we can
) resort to the weaker requirement that each of the intervals err in their coverage only by Oy(1/ n). Formally,
. Probf 8y [0 < 8< 8pc, [1-0) = 1-2a + Q1) @3.4) -
C and similarly for 8g¢4a). We conjecture this result and also
8 pcalla]-8pcalal *
—_— =y @5)
& 2
7
but so far we have been unable to proof these conjectures.
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4. Non-parametric problems.

If we were to approach the non-parametric problem in its most general form we would have to consider

all possible distributions Fg, that is, let n be infinite dimensional. This would obviously be infeasible.
Following Efron, we simplify the problem substantially by assuming that Fn has support only on the
observed data x4,x3,..X,. This makes the problem finite dimensional and the approach of section 3 can be
used.

Consider the data x4,X3,...X, to be fixed and let 11 ; = log(Prob(X=x;)), i=1,2,...n. We can describe any
realization from Fy, by P* where P;* = #X ' =x})/ n. Then F3 is a rescaled multinomial distribution, that is P*

~ Mutt(n,efl)’ n. The observed sample gives rise to n= log(P%) where PO=(1/ n,1/ n,...1/ m)! and hence Fa

= Mult(n,PO)/ n. The least favourable family through 1 tums out to be P*~ Mult(n,w )/ n, where
wi=etl /3 and

(19 P ee)-1F)
U = ime (4.9)

(See Efron 1984b, section 7). Here §; is a point mass at x; and the U; are called the empirical influence

components of 5-((?'").
We now have almost all we need to compute the BC,, interval for the non-parametric case. Resampling
is done from F = Mult(n,P%)/ n and this is equivalent to sampling with replacement from xy.x5,...X,. The

bias constant is estimated as @-1 (5(5)) as before. We require only an estimate of the acceleration a.
Applying formuia (3.3) to the muitinomial family - gives

Iy, 3
a = “2

xu;3 %

......
--------
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Table 1 line 9 shows the results of the non-parametric BC, interval applied to the variance problem. 1t

outperforms the (non-parametric) percentile and bias-corrected percentile intervals but doesn fully

capture the assymetry of the exact interval. This is due to the short tails of the bootstrap distribution of ’9\‘ ¢
The BC,? interval can also be used here. The transformation gy(t)=¢/ ! [xoMs)]1/2ds requires an

estimate of the expected Fisher information le(s) for the multinomial subfamily (4.1). Straightforward

calculations show that

XS = n[DLPeVis /T - (SheYis/SaUeR] 3y

A simple numerical integration (like the trapezoid rule) can then be used to compute g¢(t). Note that kzx(s)
is a non-negative function by Jensen's inequality and is in fact positive unless all the U;'s are equal. Hence
g4(t) will be monotone increasing and invertible.

Line 10 of Table 1 shows the results of the BC .0 procedure applied to the variance problem. As in
the parametric case the results were very similar on an interval to interval basis to the BC, results.

Actualily, computation of the BC,0 intervals doesn't even require bootstrap sampling! The only
component of the procedure that seems to require it is the estimation ot zo. But Efron (1984b section 7)
provides an approximation for g based on first and second order empirical influences. Let V be the nby n
matrix of second order ihﬂuences. define zq1=(1/ 6)XU;3/ [ZU;2)¥ 2 (the approximation for a) and let

Zgo={UtVW/ [JUIIR -trace(V) ]/ 2n||Ul12. Then a good approximation for zq is

2 = &' (20(201) A Z2) (4.4)

—

Using the following method due to Tim Hesterberg of Stanford , z5, can be computed with only 2
additional evaluations of the statistic.Let U(i.e) equal the expression in the right hand side of (4.1) for some
small positive ¢ . Let D(i,e) =U(i,e) - U(e) where U(e) is the mean of the U(i,e) 's. It is aasy to show that
trace(V)=€2L U(i.g). Using the notation 8 (P°) to denote 8=t(F) evaluated for the distribution F putting

mass P’ on x; (see e.g. Efron 1981), one can also show that U'VU = [8( PO +¢U)- 8( PO -eU)-26( PO)] re2.

17
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Thus a total of n+2 evaluations of the statistic are required to compute a and zy. Note however that (4.4) is
only an approximation; Hesterberg is presently studying its accuracy.

It the BC, and BC,C intervals can be shown to be second order correct, then they will also be second
order correct in the non-parametric setting, i it is assumed that th.e number of categories in the support of

the multinomial stays fixed as n goes to infinity. Combined with the assumption that the support of the

distribution is contined to x4, x3 , ... X,, this is a less than ideal definition on "non-parametric second order

correctness”. We are currently looking at ways of making it more realistic.

Example 3. The Proportional Hazards model.

For illustration we applied these methods to the proportional hazards model of Cox (1972). The data

we chose was mouse leukemia data analysed by Cox in that paper. It consists of the survival times (y;) in
weeks of mice in two groups (x;) , control (0) and treatment (1), as well as a censoring indicator (5;). The
partial likelihood estimatorﬁ was 1.51. We applied the confidencs interval procedures by considering

(y; X; .5;) as the sampling unit. Estimation of the BC ,° interval requires writing the statistic as a functional

statistic— not necessary for the BC interval because it only evaluates the statistic on bootstrap samples.

We define * the partial likelihood estimator for sample weights w ,B(w), as the maximizer of

Puw = TlepCEBxw)/ Cerw eptyhH %) (45)
D

where D is the set indices of the failure times, R; is the set of indices of the items at risk before the ith failure

and each of the sums is over the dems failing at the ith failure time. This definition is found in Tibshirani
(1984). Finaily, U and V were computed by substituting e=1/ (n+1) into their definitions . Table 3 shows

the rasults of the various non-parametric confidence procedures.

18

XXX -

&

Pl

vt tee
| NEARARS N
RN A

e
2 AP o]



K ~
..
*A
‘ 9
\ Table 3
N Confidence intervals for
Proportional hazards example

: Standard (84, 2.18) X
3 Percentile (.93, 2.34) X
BC (95.236) N
) BC, (.75, 215) 4

BCO (87,2.03)
Interestingly, the percentile and BC intervals shifted the standard interval to the right, but the negative 3
acceleration (a=-.152) caused the BC, and BC,° intervals to shiftback to the left. The BCa° is also :
somewhat shorter than the BC,, interval. ”
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5. Approximating the bootstrap distribution ot a statistic.
,
. n.-

The results of sections 2 and 3 show (and conjecture) respectively, that

Gldo)  (dokzgr (g At-aizgd) :
i and
i 0" (e 1 22 5

»

el

differ by only Op(n1). We can usa this to estimate G (p) (for any p), without bootstrap sampling, as follows.

First we find 2(®) such that p=2{a], i.e. 2(®) =p/ (1+ap) -z,. Then we substitute this into (S.1) and thus get an

CR ISR 4

» ®
approximationto (5 ( P) . .
X
kS
RS
o Ol
It instead we want a density that closely approximates the bootstrap histogram, we recall that ]
.. A
g(0)=g(6)+a(Z-zg) where Z is a N(0,1) random variable. Hence a good approximating density is the density o
’ .
of g'V(g(8)+a(Z-zg)). After a little algebra this can be expressed as -
: .
X Ks) = w(ed1R1)/a 42 R1(8R (efs))12 (52)
where y is the density function of N(0,1). In the non-parametric case, (5.2) gives the density ot A and X
) must be multiplied by d\./ d8 = v ko (s ) to obtain the density for . B

a4 T
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For the Cox model example, Figure 3 shows a histogram of 1000 bootstrap values along with the
approximating density j(s) (renormalized) and Table 4 shows the approximation based on (§2). In both

cases the agreement is quite good.

Figure 3
Boolstrap histogram and
approximation based on (3.2)
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Table 4.

Approximations to G™1(p)
Bootstrap Formula

P B«1000 6.1

.025 0.80 0.86

.05 0.92 093

10 1.04 1.04

.25 1.25 1.27

. .50 1.83 1.52
‘- .75 1.80 1.77
- .90 2.34 2.24

5 975 2.47 2.47
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This approximating procedure can be thought of as a refinement ot the usual central limit thearem ~
approximation N(a. kz(é)"), cormrect to order n-172, The new approximation N :
1 A A

g! NEA -2 +ag@r] (54) ¥

incorporates three order n-12 components: g(.), Zg and a. In a parametric setting, (5.2) could prove to be

a useful altemnative to an edgeworth expansion. It has two distinct advantages over edgeworth

e e .
[N R

expansions: 1) it is always non-negative because g(.) is monotone increasing and 2) it is computable

»
‘pts
Yy by b

(albeit not often by hand) for general first order efficient statistizs's.

¥ v
R’

The reason that this procedure works in the non-parametric setting is that asymptotically, one has only
to look at the bootstrap distribution of o projected onto U in order to compute 3(.). It is easy to check

that a { formula 4.2) equals the skewness of Pt U and that Z( takes into account both this skewness and

the curvature of the level surfaces near PO,
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6. Proofs of theorems 2.1 and 2.2. \ ,
-
NS
Suppose that the parameter 8 has been rescaled to be of order n'/2 as in Efron’s (1984b) expression .
(4.5). Assume also the regularity conditions in Efron's (4.4). Consider now X
¢=g@) = (- 1)/A (6.1)
where A is understood to be a constant of order n"12, “'hen -
: b-9 = (914 (A1) (62) 2
and from the moments of 0-8 (see for example Welch 1965) it can be shown that
- E(®-4) = (1/2)ne”8[(2xy 4001V NV24+AY g +O(n2)]
var(p-9) = ne2(1/x+0(13)
T (@-¢) = (Bry 142001V x2¥ 2 + 340121, 12 4O ]
. N .
: Lé-4 = ) (63)
where v, and ¥, skewness and excess in kurtosis and the x's are as defined in DiCiccio (1984). If the "
: 3
3 choice X
: N

A= - (V3)@Bxyy+2%p) /(N ) (6.4)




is made, then 71(8 - ¢} is Oy(n"1). By the relations attributed to Bartlett, k3+3x+Kgg1=0 and Ky=2Knq1+Xs.

it follows that # 8 is the variance stablized parameter with xp=1, then

A =(1/6)(x3 /¥ Q) = (1/6)(x3 /0¥ ?

E(®-¢) = -zg+ OFT")

var(s - ¢) = e220:0(rrY)

H(6-) = OfrY)

Thus 3 - ¢ is, to second order, normally distributed with mean -z and standard deviation eABx14A.

Although x4 at the true value 8 is unknown, x4(6) may be used in its place for the calculation of A, without

altering the orders of the preceding error terms. This establishes theorem (2.1). Theorem (2.2) then

{ollows immediately from Efron's (11.3). Infact (11.3) holds exaclly for 8gc,0(al.
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